
A Choices Hypervisor on the ARM Architecture
Rishi Bhardwaj, Phillip Reames, Russell Greenspan,

Vijay Srinivas Nori, Ercan Ucan
University of Illinois

April, 2006

ABSTRACT
We describe our experiments building a hypervisor using
Choices, an object-oriented operating system, on the ARM
architecture. Our approach uses VMX-style hardware
support to ensure that execution of any sensitive instruction
transfers control to the hypervisor. We provide such an
architecture by making modifications to QEMU, an open
source ARM emulator. Thus our work is divided into three
parts. We first surveyed the ARM7 architecture and
identified the sensitive instructions. Next we altered QEMU
so that it traps to our hypervisor whenever a sensitive
instruction is executed in a low privileged user mode.
Finally we added a hyper call handler to Choices to
validate and emulate the sensitive instructions QEMU
traps on, providing a virtual machine environment to guest
operating systems.

1. INTRODUCTION
1.1 Motivation
Advances in computer architecture, semiconductor
technology, and system software have enabled computer
users access to significantly more computing resources
than they need to run their applications. As a result,
performance is no longer the overriding concern when
designing computer hardware and software, and instead
new challenges have emerged such as “How do we
efficiently utilize fast hardware and abundant computing
resources to securely run our applications?” For example, it
should be possible for a user to run an untrusted application
without potentially crashing the operating system and
causing damage to hard disk data if the application were to
perform malicious operations.

A related issue is of reliability, which can be provided by
running multiple instances of machines (mirrors). Each
machine has the same functionality such that crashing one
machine does not bring the whole system down or corrupt
user data. Additionally, a computer user might like to run
multiple operating systems on a single machine to use two

applications which run only on their respective OSes.
Furthermore, with the advent of multi-core processors, the
ability to run multiple concurrent operating systems will
become much easier, and systems that take advantage of
this feature will be highly desired.

1.2 Overview
The technique of virtualization [11], proposed in the 1960’s
by IBM, provides an elegant solution to the problems
presented above. Virtualization provides us the ability to
have multiple operating systems run in a fast, secure and
seamless manner on a single machine. The layer of
underlying software, built to achieve virtualization and
protection, gives each operating system the illusion of
running on bare hardware and solves the problems
presented above.

In this paper we describe the hypervisor we have built for
the ARM7 architecture. We have chosen the ARM7
architecture because we did not find any open source
hypervisor for the ARM architecture in our literature
survey, and because the stable version of QEMU that we
are using emulates the ARM7 architecture. Our hypervisor
is based on the Choices [2] operating system, which is an
object oriented operating system running on ARM
developed at the University of Illinois. We have chosen
Choices to investigate the process of building an object-
oriented hypervisor.

For performance reasons we would like to have as much of
the guest OS code executed directly on real hardware as
possible, with minimum intervention by the hypervisor.
Every intervention by the hypervisor means more executed
instructions, which directly translates to more overhead.
However, for virtualization to take place, certain sensitive
instructions cannot be allowed to be executed on the
hardware directly by the guest OS [1]. Thus the hypervisor
needs to support the emulation of these sensitive
instructions and must provide a mechanism which makes
sure that control is transferred from the guest OS to the
hypervisor whenever a sensitive instruction needs to be
executed by the guest OS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

For our implementation, we identified three different
approaches for control transfer from the guest OS into the
hypervisor, namely software pure virtualization,
paravirtualization, and hardware supported pure
virtualization (these methods are described in detail in

 1

Section 2). The third approach, hardware supported
virtualization, has the advantages of not having to modify
the guest OS binary, as we do in paravirtualization, and
remaining less complex in implementation than software
pure virtualization. For these reasons we have adopted this
approach in designing our system.

2. RELATED WORK
Existing techniques of Hypervisor implementation include
pure virtualization, paravirtualization and finally the VMX-
style hardware supported approach. Popular systems
employing these approaches to virtualization are discussed
below.

VMware [10], employing the pure virtualization approach,
has developed both Server (ESX) and Workstation
virtualization components; both exploit the benefits and
drawbacks of full virtualization and require no guest OS
modification. In ESX, a Virtual Machine Monitor (VMM)
intercepts all I/O calls and forwards them to the VMkernel,
which handles communication with the physical hardware
[6]. ESX employs direct execution (running the virtual
machine directly on the underlying processor) and shadow
page tables to improve performance. In VMWorkstation, a
driver (VMDriver) is loaded in the OS on which
Workstation runs; in each OS application, a special process
(VMApp) runs and establishes communication to the
hypervisor via this driver [7]. The software-based pure
virtualization approach has the advantage of not having to
modify the guest operating system at all. However, it has
the disadvantage of incurring a performance penalty since
it has to scan and validate binary instructions and insert
traps prior to execution of these instructions. It is for this
reason that we have decided not to adopt this approach.

Xen-style paravirtualization [4] requires slight
modifications to host OS instructions. Xen uses the upper
64MB of each host OS’s address space to avoid TLB
flushes on address space switches, and also requires
modifications to the host OS page fault handler. Unlike
pure virtualization [5], paravirtualization does not require
expensive dynamic machine code rewrites for sensitive
instructions and permits the host OS any interaction with
the physical hardware, which at times can have
performance benefits. Xen’s approach, though efficient,
requires the guest OS to be modified to be able to run on
the hypervisor. Therefore, we have chosen not to pursue
this approach in our project since it is unlikely in general to
assume access to the guest OS’s source code.

In Intel’s VMX approach [8], hardware support is added to
facilitate virtualization. In general, the hypervisor runs in
VMX root operation mode and guest OSes run in VMX
non-root operation mode. Processor behavior in VMX root
operation is very much as it is outside VMX operation. The
principal differences are that a set of new instructions (the
VMX instructions) is available and that the values that can
be loaded into certain control registers are limited.

Processor behavior in VMX non-root operation is restricted
and modified to facilitate virtualization. Instead of their
ordinary operation, certain sensitive instructions (including
the new VMCALL instruction) and events cause VM traps
to the hypervisor. Because these VM traps replace ordinary
behavior, the functionality of software in VMX non-root
operation is limited. It is this limitation that allows the
hypervisor to retain control of processor resources. We
adopt this approach in our project as it is a tradeoff of the
performance of the paravirtualization approach with the
benefit of not requiring changes to the guest OS as in pure
virtualization approach.

QEMU is an ARM7 emulator running on the x86
architecture [9]. In our approach, modeled on the VMX
approach, we modify QEMU to trap on sensitive
instructions when executing in non-privileged mode. This
is a simulation of processor-level support for virtualization.
Within the scope of the literature we surveyed, no such
open source hardware-based virtualization has been
attempted on the ARM processor.

3. SYSTEM DESIGN
3.1 System Design Overview
In our virtual machine system we have the guest operating
system execute in ARM user mode (less privileged mode),
and all privileged instructions are considered “illegal” by
the original ARM instruction set architecture. The
modifications we have made to QEMU allow the privileged
(and sensitive) instructions to trap to the Choices handler.
Therefore, the critical design requirements for this system
are that the guest OS must not be aware that it is running in
a less privileged mode, i.e. its execution model must be
preserved with the hypervisor acting as the bookkeeper for
VM state, and that sensitive instructions issued by the guest
OS which potentially may damage or detect system state
beyond access privileges must be emulated and not
executed directly on the hardware.

Achieving these goals required the completion of the
following milestones:

• Studying the complete ARM7 architecture as emulated
by QEMU and identifying the sensitive instructions in it.

• Designing and implementing the trap mechanism from
QEMU to the Choices hypervisor by modification of the
QEMU source code (for each of the sensitive
instructions identified in phase 1). This allows control to
be transferred to the Choices hypervisor after a sensitive
instruction is executed. Note that if the CPU is running
in hypervisor-privilege mode, all instructions are
executed unaltered.

• Implementing the trap handler to validate and emulate
the sensitive instructions by modification of the Choices
source code. Figure 1 depicts a block diagram of the
main system components in relation to each other.

 2

Figure 1: System Block Diagram showing Choices Hypervisor

running on QEMU

As shown, a sensitive instruction is trapped to the
hypervisor by QEMU for validation followed by emulation.
All other instructions are executed and results made visible
to the executing guest operating system (or application
binary) immediately.

3.1.1 Identifying Sensitive Instructions
A classification of sensitive ARM instructions is described
in Section 4.1.

3.1.2 Trapping Mechanism in QEMU
QEMU translates each ARM instruction into a set of
corresponding x86 instructions in order to emulate ARM
instructions on an x86 system. The translation, done at
runtime, is batched with a “block” of ARM instructions
translated together in one go. A branch instruction or a
page boundary or a mode changing instruction (writing into
CPSR) marks the end of an ARM instruction block. The
translation process is stopped upon encountering a block
boundary after which the translated x86 code is executed
on the host machine. After execution the translated block is
cached so that the dynamic translation does not have to be
done every time the same ARM instructions are to be run.
The whole process is then repeated for the next block of
ARM code.

The important point to note is that the block of ARM
instructions being translated will be executed either in
ARM privilege mode or the ARM user mode. When
translating a sensitive instruction in QEMU, we need to
check if it will be executed in user mode or privilege mode.
When translating a sensitive instruction in privilege mode,
we do not modify the translation sequence and have the
original QEMU code take care of the translation as before.
But when the sensitive instruction needs to be executed in
user mode, we translate the instruction like a SWI. Thus
sensitive instructions in user mode are treated as SWI.

3.1.3 Designing the Choices Hypervisor
The third part of our work was to build a hyper call handler
in Choices. This handler is invoked by the modified QEMU
emulator hardware whenever a sensitive instruction is to be
executed in a virtual machine. The handler must figure out
what instruction was tried on in the virtual machine
environment, validate and emulate it. By emulation, we
mean that the handler must change the CPU context in a
manner such that when the handler returns the control, the
guest operating system is not able to tell whether the
instruction is being executed in the virtual machine or on
actual hardware. For example, suppose the guest operating
system running in virtual machine system mode tries to
copy (read) the contents of the current program status
register (CPSR, containing information about the mode bits)
into register 1. Then the hyper call handler must copy a
value in register 1 which the guest operating system
expects to see (i.e. mode bits copied into register 1 must
indicate to be in the system mode and not in user mode).

Additionally, the hyper call handler must validate the
instruction which need to be emulated. For example, we
can not have a privileged instruction emulated when the
virtual machine is in user mode. In such a case the guest
operating system’s illegal instruction handler must be
called.

As described above, we must have a mechanism to validate
and emulate sensitive instructions whenever the hypervisor
receives a hyper call. Since Choices is an object oriented
operating system, it allows for a very modular design of the
hypervisor. To accommodate our changes, we added a new
class to Choices (ArmVMContext) which represents the
context of the CPU for a virtual machine, i.e. the context
which the guest operating system thinks the CPU is in.
Thus for each virtual machine the hypervisor maintains a
shadow of the CPU context for that machine. Emulation of
a sensitive instruction changes the ArmVMContext object
for the virtual machine as it would for the real hardware.
The guest operating system in short would never be able to
tell the difference between running on the virtual machine
or the real machine.

Upon receiving a hyper call from QEMU, the hyper call
handler checks the opcode and parameters of the sensitive
instruction for violation of privileges. For example, an
instruction executing in virtual machine user mode should
not attempt to modify the CPSR mode bits (or for that
matter try any privileged instruction). After validating the
instruction the hypervisor changes the context of real
hardware CPU such that when control returns back to the
virtual machine process the execution may continue as if
the instruction was executed directly on the machine.

Some of the other functionalities that a hypervisor must
provide are I/O forwarding and virtual memory support. A
hypervisor must efficiently arbitrate between the I/O
devices and guest operating systems in a seamless manner.
Also it must implement a mechanism by which a guest

 3

operating system’s memory management works correctly in
a virtual machine environment without, conflicting with the
memory management of the hypervisor itself. In the current
system, we did not implement the above two
functionalities. We think that I/O forwarding can be added
to the system without much difficulty; memory
management, though, is an altogether different ball game.
We provide more details about the difficulties in emulating
the ARM memory management system in Section 5.

4. CONTRIBUTIONS
4.1 Sensitive Instruction Study on ARM
An operating system runs in a kernel-mode, which allows
higher privileges compared to the user applications. This
higher privileged mode allows the OS access to certain
privileged machine instructions and resources not available
to user-mode applications. This creates a problem in
building a hypervisor, since the OS will now run in a semi-
privileged hardware mode, with traps on sensitive
instructions going to the hypervisor. It is the responsibility
of the hypervisor to keep track of the OS’s state, allow the
safe operations to execute, and block the illegal sensitive
operations from executing. Analysis of virtualization on the
Intel Pentium architecture [1] shows that the instructions
following instructions must be considered as sensitive:

• An instruction represented by the same bit pattern or
format executes differently in modes of different
privileges. This means that on execution, the instruction
must trap to the hypervisor which has the mode
information to execute the instruction properly.

• A instruction whose execution requires greater
privileges than the privilege in which the guest OS is
being run.

Using this as a baseline, we classify the following
instructions in the ARM7 architecture [12] as sensitive and
present our reasons for the classification. As a result of our
study we identified six categories for sensitive ARM
instructions.

• MRS and MSR instructions: instructions that are related to
the CPSR (Current Program Status Register). MRS (Move
PSR to General-purpose Register) instruction moves the
value of the CPSR or the SPSR of the current mode into a
general-purpose register. In the general-purpose register,
the value can be examined or manipulated with normal
data-processing instructions. MSR (Move to Status
Register from ARM Register) instruction transfers the
value of a general-purpose register or immediate
constant to the CPSR or the SPSR (Saved Program Status
Register).

• Common ALU (Arithmetic Logic Unit) instructions:
instructions like ADD, AND, etc. that have their S bit set to
1 and also the Rd (Destination register) = 15 (Rd is the
Program Counter.) If this is the case for these group of

instructions, then the CPSR is updated (Value in SPSR is
written into CPSR).

• Thumb Related instructions: instructions that have the
capability to switch to the Thumb mode for ARM. The
Thumb instruction set is re-encoded subset of the ARM
instruction set and is designed to increase the
performance using a 16-bit or narrower memory data
bus and to allow better code density than regular ARM.
There are branch instructions (e.g. BX, BLX) which can
switch instruction set, so that execution continues at the
branch target using the Thumb instruction set of ARM.

• Privileged Coprocessor instructions: instructions that
make use of the coprocessors in the system. There are
three types of coprocessor instructions: Data-processing
(e.g. CDP), data transfer (e.g. LDC), register transfer (e.g.
MRC) and all of them are considered to be sensitive.

• MMU (Memory Management Unit) related instructions:
instructions that make use of the MMU are sensitive
instructions as well. Load and store type of instructions
are sensitive since they go through the memory
management unit.

• Exceptions: instructions such as SWI (software
interrupt). Since these instructions cause mode change,
they are considered as sensitive instructions.

5. CHALLENGES IN DESIGN AND
IMPLEMENTATION
The first part of the project was to read, understand and
make changes to the QEMU source code to force QEMU to
trap when trying to execute a sensitive instruction from low
privileged mode, thus allowing our Choices Hypervisor to
emulate the sensitive instruction. The whole mechanism
becomes a bit confusing, where the ARM instruction are
being emulated by Choices which itself is executing over
QEMU ARM CPU emulator. The various system
components are shown in Figure 2.

Figure 2. System Block Diagram showing Choices Hypervisor

running on QEMU

5.1 Privilege Modes
A design choice we made was to decide upon the number
of privilege modes we could provide in the hardware (by
making changes in QEMU). Including the various interrupt
modes, there are in total 7 privilege modes in the ARM

 4

CPU. By providing a VMX-style architecture we can in
total add 7 more modes (virtual machine modes), one each
for the current privilege modes. Each of the new virtual
machine modes would be a mirror of its corresponding
current privilege mode but would trap on executing a
sensitive instruction. We decided to maintain the additional
virtual machine modes in software than in hardware. This
decision was made to keep the system simple and easy to
implement. All state information is stored and maintained
by the hypervisor and not by the hardware.

5.2 Virtual Memory
A tricky implementation issue is providing memory
management support for virtual machines. For
virtualization to take place we cannot allow a guest OS to
read/write directly from/to system page tables. The
hypervisor needs to act as an interface for any access to the
page tables by the guest OS. Since the page tables are
stored in memory, we will have to keep tab of all memory
reads/writes the guest OS make to see if the memory area
accessed stores a page table or not.

The performance overhead for trapping on all memory
accesses by the guest OS makes the above solution
infeasible. The solution then is to have the page frame
storing the page tables (for a virtual machine) be
inaccessible for the guest OS (i.e. the page table entry for
the logical address of the page frame storing the page tables
be invalid). This will ensure that a trap to the hypervisor is
generated only when attempts to access the page frame
storing the page tables are made. Due to the intricacy of
this implementation, we for now assume that the ARM
memory management will never be activated by the binary
program running in the virtual machine.

6. EXPERIMENTAL RESULTS
6.1 Motivation
Our experiments sought to demonstrate that our modified
system preserves correctness and efficiency when
executing sensitive instructions, that the RISC-nature of
ARM provides an excellent instruction set from which to
implement VMX-style virtualization primitives, and that
the Choices OS is a worthwhile candidate in which to
implement a hypervisor.

6.2 Procedure Overview
To test that our implementation properly traps to the
hypervisor when executing sensitive instructions in low
privileged user-mode, we run an ARM7 binary application
that executes the supported sensitive instructions both in an
unchanged QEMU environment (executing in privileged
system mode) and in a virtual environment (running in low
privileged user-mode) using our Choices hypervisor on the
modified QEMU. We then test that our modified
implementation correctly emulates the sensitive
instructions by checking that the output of the binary
program is the same when run in both environments, and

measure the efficiency of our system by analyzing the
number of instructions executed at runtime when running
the test binary in each environment.

6.3 Equipment and Experimental
Environment
Our environment consists of a single x86 host running our
modified version of the ARM emulator QEMU, which
hosts our modified version of the Choices OS with
hypervisor support running in kernel-mode, which hosts
guest OSes running in user-mode. We are using the CSIL-
LINUX machines, running QEMU 0.8.0 on Linux 2.6.15
and compiling with gcc 3.2. Note that an attempt was made
to compile and run QEMU on Windows using the Linux
API emulator CYGWIN, but this effort was abandoned due
to lack of CYGWIN support.

6.4 Metrics and Results
6.4.1 Correctness
We would like to have assurance that every targeted ARM7
instruction emulated by QEMU is handled correctly by our
virtualization approach. Moreover, the virtualized
instruction should not have any additional side effects on
the VM or the real host other than it supposed to have. To
study this, we tested several valid binaries in both an
unmodified system and in our modified environment, and
ensured that they execute their operations correctly and
return the expected results.

For example, a sample ARM7 binary might include the
following instructions:
CMP R1, R3
MSR CPSR, #0x10

with the following output:
We got a hypercall for MSR
context->CPSR before MSR = 0x60000010
context->CPSR after MSR = 0x10

The first non-sensitive CMP instruction sets the CPSR bits to
#0x60000010, which is the expected comparison output
stored in the CPSR. Then the MSR instruction changes the
CPSR to #0x10 representing a change from the VM system
mode to the VM user mode. Since, this is a legal operation
in system mode it is allowed by the hypervisor without any
errors.

6.4.2 Completeness
As described above, with the exception of instructions
pertaining to memory management, sensitive ARM7
instructions that are emulated by QEMU have been
implemented in our virtualization approach. These
instructions show exactly the same behavior before and
after being virtualized using our approach.

6.4.3 Performance
Another key metric for evaluation is the performance of the
system. Trapping into the hypervisor for the interpretation

 5

of sensitive instructions and validation checks for these
instructions provides significant overhead, but it is highly
undesirable for the hypervisor to excessively slow valid
operations. We did not implement the means by which to
analyze the number of extra ARM instruction being
executed by the Choices handler to emulate a sensitive
instruction, but instead observed the number of lines of
ARM instructions in the compiled binary code of our
handler function.

On average, we observed 320 additional ARM instructions
in the compiled handler code for emulating a sensitive
instruction. This figure tells the total number of ARM
instructions in the hyper call handler binary for emulating
one sensitive instruction; note that this is a pessimistic
bound since there are a number of branch instructions
(corresponding to if statements in the C++ code) that are
executed as well.

6.4.4 Security
One of the main motivations for a VM implementation is to
keep VMs isolated from each other and the hypervisor.
Therefore, a key test metric is the system’s security: does
the hypervisor achieve its intended goal of keeping VM
accesses in their own space and allow valid VM operations
only? To measure this we tested the system with several
invalid binaries in different VMs that execute privileged
instructions in VM user-mode or access out-of-bounds
registers. Our system prevents invalid binaries from
executing invalid instructions or accessing protected
registers, and from each VM’s perspective, there is no
interfere and each will function like a separate operating
system on a separate host.

For example, expanding on the example above, if we now
execute an ARM binary with the following instructions:
CMP R1, R3
MSR CPSR, #0x10
MSR SPSR, R0

we get the following output:
We got a hypercall for MSR
context->CPSR before MSR = 0x60000010
context->CPSR after MSR = 0x10
We got a hypercall for MSR
ERROR: Tried to do SPSR = reg from VM
User_mode

In this case, since we executed an instruction with SPSR
access in VM user mode, the hypervisor flags an error
immediately and halts the execution of the erroneous code.

7. CONCLUSION
Our current design and implementation supports a simple
ARM binary file (not employing memory management)
running in a virtual machine environment. The virtual
machine environment is supported by our Choices
Hypervisor, executing in our modified QEMU, which

provides emulated VMX style ARM architecture. The
design and implementation of the system is such that it is
can be easily extended to provide support for full fledged
virtual machine environment with memory management
turned on.

We hope that our work will influence future directions of
virtualization research by showing the baseline
requirements for a system that virtualizes ARM via a
hypervisor. Acceptable performance shows that we have
created a proof-of-concept for future hardware-
virtualization support in ARM processors, in addition to the
design and implementation of an object-oriented hypervisor
that future Choices designers can exploit.

8. REFERENCES
[1] J.Robin, C.Irvine, “Analysis of the Intel Pentium’s
ability to Support a Secure virtual machine Monitor”, In
Proceedings of the 9th USENIX Security Symposium,
Denver, CO, USA, pages 129-144, Aug 2000.
[2] Campbell R., Johnston G. and Russo V. 1987.,
“Choices (class hierarchical open interface for custom
embedded systems)”, SIGOPS Oper. Syst. Rev. 21, 3 (Jul.
1987), 9-17.
[3] ARM7 TDMI data sheet. http://www.e-
lab.de/ARM7/ARM-instructionset.pdf.
[4] P.T.Barham, B.Dragovic, K.Fraser, S.Hand,
T.L.Harris, A.Ho, R.Neugebauer, I.Pratt, A. Warfield.,
“Xen and the art of virtualization”, SOSP 2003:164-177.
[5] Popek, G. J. and Goldberg, R. P. 1974. “Formal
requirements for virtualizable third generation
architectures”, Commun. ACM 17, 7 (Jul. 1974), 412-421.
[6] “ESX Server Architecture and Performance
Implications”, VMware Technical Papers.
[7] J. Sugerman, G. Venkitachalam, and B.-H. Lim,
“Virtualizing I/O Devices on VMware Workstation’s
Hosted virtual machine Monitor”, USENIX Annual
Technical Conference, pages 1--14. USENIX Association,
2001.
[8] VMX Manual.
ftp://download.intel.com/technology/computing/vptech/C9
7063-002.pdf.
[9] QEMU technical documentation.
http://fabrice.bellard.free.fr/qemu/qemutech.html\#SEC1.
[10] Presented by Jack Lo, VMWare and CPU
Virtualization Technology,
www.vmware.com/vmworld/2005/pac346.pdf.
[11] An Introduction to Virtualization,
http://www.kernelthread.com/publications/virtualization.
[12] David Seal, “ARM Architecture Reference Manual”,
Addison-Wesley, 2001.

 6

http://www.e-lab.de/ARM7/ARM-instructionset.pdf
http://www.e-lab.de/ARM7/ARM-instructionset.pdf
ftp://download.intel.com/technology/computing/vptech/C97063-002.pdf
ftp://download.intel.com/technology/computing/vptech/C97063-002.pdf
http://www.vmware.com/vmworld/2005/pac346.pdf
http://www.kernelthread.com/publications/virtualization

	INTRODUCTION
	Motivation
	Overview

	Related Work
	System Design
	System Design Overview
	Identifying Sensitive Instructions
	Trapping Mechanism in QEMU
	Designing the Choices Hypervisor

	Contributions
	Sensitive Instruction Study on ARM

	Challenges in Design and Implementation
	Privilege Modes
	Virtual Memory

	Experimental Results
	Motivation
	Procedure Overview
	Equipment and Experimental Environment
	Metrics and Results
	Correctness
	Completeness
	Performance
	Security

	Conclusion
	References

