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ABSTRACT 
We describe our experiments building a hypervisor using 
Choices, an object-oriented operating system, on the ARM 
architecture. Our approach uses VMX-style hardware 
support to ensure that execution of any sensitive instruction 
transfers control to the hypervisor. We provide such an 
architecture by making modifications to QEMU, an open 
source ARM emulator. Thus our work is divided into three 
parts. We first surveyed the ARM7 architecture and 
identified the sensitive instructions. Next we altered QEMU 
so that it traps to our hypervisor whenever a sensitive 
instruction is executed in a low privileged user mode. 
Finally we added a hyper call handler to Choices to 
validate and emulate the sensitive instructions QEMU 
traps on, providing a virtual machine environment to guest 
operating systems.   

1. INTRODUCTION 
1.1 Motivation 
Advances in computer architecture, semiconductor 
technology, and system software have enabled computer 
users access to significantly more computing resources 
than they need to run their applications. As a result, 
performance is no longer the overriding concern when 
designing computer hardware and software, and instead 
new challenges have emerged such as “How do we 
efficiently utilize fast hardware and abundant computing 
resources to securely run our applications?” For example, it 
should be possible for a user to run an untrusted application 
without potentially crashing the operating system and 
causing damage to hard disk data if the application were to 
perform malicious operations.  

A related issue is of reliability, which can be provided by 
running multiple instances of machines (mirrors). Each 
machine has the same functionality such that crashing one 
machine does not bring the whole system down or corrupt 
user data. Additionally, a computer user might like to run 
multiple operating systems on a single machine to use two 

applications which run only on their respective OSes. 
Furthermore, with the advent of multi-core processors, the 
ability to run multiple concurrent operating systems will 
become much easier, and systems that take advantage of 
this feature will be highly desired. 

1.2 Overview 
The technique of virtualization [11], proposed in the 1960’s 
by IBM, provides an elegant solution to the problems 
presented above. Virtualization provides us the ability to 
have multiple operating systems run in a fast, secure and 
seamless manner on a single machine. The layer of 
underlying software, built to achieve virtualization and 
protection, gives each operating system the illusion of 
running on bare hardware and solves the problems 
presented above. 

In this paper we describe the hypervisor we have built for 
the ARM7 architecture. We have chosen the ARM7 
architecture because we did not find any open source 
hypervisor for the ARM architecture in our literature 
survey, and because the stable version of QEMU that we 
are using emulates the ARM7 architecture. Our hypervisor 
is based on the Choices [2] operating system, which is an 
object oriented operating system running on ARM 
developed at the University of Illinois. We have chosen 
Choices to investigate the process of building an object-
oriented hypervisor.  

For performance reasons we would like to have as much of 
the guest OS code executed directly on real hardware as 
possible, with minimum intervention by the hypervisor. 
Every intervention by the hypervisor means more executed 
instructions, which directly translates to more overhead. 
However, for virtualization to take place, certain sensitive 
instructions cannot be allowed to be executed on the 
hardware directly by the guest OS [1]. Thus the hypervisor 
needs to support the emulation of these sensitive 
instructions and must provide a mechanism which makes 
sure that control is transferred from the guest OS to the 
hypervisor whenever a sensitive instruction needs to be 
executed by the guest OS. 
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For our implementation, we identified three different 
approaches for control transfer from the guest OS into the 
hypervisor, namely software pure virtualization, 
paravirtualization, and hardware supported pure 
virtualization (these methods are described in detail in 
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Section 2). The third approach, hardware supported 
virtualization, has the advantages of not having to modify 
the guest OS binary, as we do in paravirtualization, and 
remaining less complex in implementation than software 
pure virtualization. For these reasons we have adopted this 
approach in designing our system. 

2. RELATED WORK 
Existing techniques of Hypervisor implementation include 
pure virtualization, paravirtualization and finally the VMX-
style hardware supported approach. Popular systems 
employing these approaches to virtualization are discussed 
below.  

VMware [10], employing the pure virtualization approach, 
has developed both Server (ESX) and Workstation 
virtualization components; both exploit the benefits and 
drawbacks of full virtualization and require no guest OS 
modification. In ESX, a Virtual Machine Monitor (VMM) 
intercepts all I/O calls and forwards them to the VMkernel, 
which handles communication with the physical hardware 
[6]. ESX employs direct execution (running the virtual 
machine directly on the underlying processor) and shadow 
page tables to improve performance. In VMWorkstation, a 
driver (VMDriver) is loaded in the OS on which 
Workstation runs; in each OS application, a special process 
(VMApp) runs and establishes communication to the 
hypervisor via this driver [7]. The software-based pure 
virtualization approach has the advantage of not having to 
modify the guest operating system at all. However, it has 
the disadvantage of incurring a performance penalty since 
it has to scan and validate binary instructions and insert 
traps prior to execution of these instructions. It is for this 
reason that we have decided not to adopt this approach. 

Xen-style paravirtualization [4] requires slight 
modifications to host OS instructions. Xen uses the upper 
64MB of each host OS’s address space to avoid TLB 
flushes on address space switches, and also requires 
modifications to the host OS page fault handler. Unlike 
pure virtualization [5], paravirtualization does not require 
expensive dynamic machine code rewrites for sensitive 
instructions and permits the host OS any interaction with 
the physical hardware, which at times can have 
performance benefits. Xen’s approach, though efficient, 
requires the guest OS to be modified to be able to run on 
the hypervisor. Therefore, we have chosen not to pursue 
this approach in our project since it is unlikely in general to 
assume access to the guest OS’s source code. 

In Intel’s VMX approach [8], hardware support is added to 
facilitate virtualization. In general, the hypervisor runs in 
VMX root operation mode and guest OSes run in VMX 
non-root operation mode. Processor behavior in VMX root 
operation is very much as it is outside VMX operation. The 
principal differences are that a set of new instructions (the 
VMX instructions) is available and that the values that can 
be loaded into certain control registers are limited. 

Processor behavior in VMX non-root operation is restricted 
and modified to facilitate virtualization. Instead of their 
ordinary operation, certain sensitive instructions (including 
the new VMCALL instruction) and events cause VM traps 
to the hypervisor. Because these VM traps replace ordinary 
behavior, the functionality of software in VMX non-root 
operation is limited. It is this limitation that allows the 
hypervisor to retain control of processor resources. We 
adopt this approach in our project as it is a tradeoff of the 
performance of the paravirtualization approach with the 
benefit of not requiring changes to the guest OS as in pure 
virtualization approach. 

QEMU is an ARM7 emulator running on the x86 
architecture [9]. In our approach, modeled on the VMX 
approach, we modify QEMU to trap on sensitive 
instructions when executing in non-privileged mode. This 
is a simulation of processor-level support for virtualization. 
Within the scope of the literature we surveyed, no such 
open source hardware-based virtualization has been 
attempted on the ARM processor. 

3. SYSTEM DESIGN 
3.1 System Design Overview 
In our virtual machine system we have the guest operating 
system execute in ARM user mode (less privileged mode), 
and all privileged instructions are considered “illegal” by 
the original ARM instruction set architecture. The 
modifications we have made to QEMU allow the privileged 
(and sensitive) instructions to trap to the Choices handler. 
Therefore, the critical design requirements for this system 
are that the guest OS must not be aware that it is running in 
a less privileged mode, i.e. its execution model must be 
preserved with the hypervisor acting as the bookkeeper for 
VM state, and that sensitive instructions issued by the guest 
OS which potentially may damage or detect system state 
beyond access privileges must be emulated and not 
executed directly on the hardware. 

Achieving these goals required the completion of the 
following milestones: 

• Studying the complete ARM7 architecture as emulated 
by QEMU and identifying the sensitive instructions in it. 

• Designing and implementing the trap mechanism from 
QEMU to the Choices hypervisor by modification of the 
QEMU source code (for each of the sensitive 
instructions identified in phase 1). This allows control to 
be transferred to the Choices hypervisor after a sensitive 
instruction is executed. Note that if the CPU is running 
in hypervisor-privilege mode, all instructions are 
executed unaltered. 

• Implementing the trap handler to validate and emulate 
the sensitive instructions by modification of the Choices 
source code. Figure 1 depicts a block diagram of the 
main system components in relation to each other. 
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Figure 1: System Block Diagram showing Choices Hypervisor 

running on QEMU 

 
As shown, a sensitive instruction is trapped to the 
hypervisor by QEMU for validation followed by emulation. 
All other instructions are executed and results made visible 
to the executing guest operating system (or application 
binary) immediately. 

3.1.1 Identifying Sensitive Instructions  
A classification of sensitive ARM instructions is described 
in Section 4.1. 

3.1.2 Trapping Mechanism in QEMU 
QEMU translates each ARM instruction into a set of 
corresponding x86 instructions in order to emulate ARM 
instructions on an x86 system. The translation, done at 
runtime, is batched with a “block” of ARM instructions 
translated together in one go. A branch instruction or a 
page boundary or a mode changing instruction (writing into 
CPSR) marks the end of an ARM instruction block. The 
translation process is stopped upon encountering a block 
boundary after which the translated x86 code is executed 
on the host machine. After execution the translated block is 
cached so that the dynamic translation does not have to be 
done every time the same ARM instructions are to be run. 
The whole process is then repeated for the next block of 
ARM code. 

The important point to note is that the block of ARM 
instructions being translated will be executed either in 
ARM privilege mode or the ARM user mode.  When 
translating a sensitive instruction in QEMU, we need to 
check if it will be executed in user mode or privilege mode. 
When translating a sensitive instruction in privilege mode, 
we do not modify the translation sequence and have the 
original QEMU code take care of the translation as before. 
But when the sensitive instruction needs to be executed in 
user mode, we translate the instruction like a SWI. Thus 
sensitive instructions in user mode are treated as SWI. 

3.1.3 Designing the Choices Hypervisor  
The third part of our work was to build a hyper call handler 
in Choices. This handler is invoked by the modified QEMU 
emulator hardware whenever a sensitive instruction is to be 
executed in a virtual machine. The handler must figure out 
what instruction was tried on in the virtual machine 
environment, validate and emulate it. By emulation, we 
mean that the handler must change the CPU context in a 
manner such that when the handler returns the control, the 
guest operating system is not able to tell whether the 
instruction is being executed in the virtual machine or on 
actual hardware. For example, suppose the guest operating 
system running in virtual machine system mode tries to 
copy (read) the contents of the current program status 
register (CPSR, containing information about the mode bits) 
into register 1. Then the hyper call handler must copy a 
value in register 1 which the guest operating system 
expects to see (i.e. mode bits copied into register 1 must 
indicate to be in the system mode and not in user mode). 

Additionally, the hyper call handler must validate the 
instruction which need to be emulated. For example, we 
can not have a privileged instruction emulated when the 
virtual machine is in user mode. In such a case the guest 
operating system’s illegal instruction handler must be 
called. 

As described above, we must have a mechanism to validate 
and emulate sensitive instructions whenever the hypervisor 
receives a hyper call. Since Choices is an object oriented 
operating system, it allows for a very modular design of the 
hypervisor. To accommodate our changes, we added a new 
class to Choices (ArmVMContext) which represents the 
context of the CPU for a virtual machine, i.e. the context 
which the guest operating system thinks the CPU is in. 
Thus for each virtual machine the hypervisor maintains a 
shadow of the CPU context for that machine. Emulation of 
a sensitive instruction changes the ArmVMContext object 
for the virtual machine as it would for the real hardware. 
The guest operating system in short would never be able to 
tell the difference between running on the virtual machine 
or the real machine. 

Upon receiving a hyper call from QEMU, the hyper call 
handler checks the opcode and parameters of the sensitive 
instruction for violation of privileges. For example, an 
instruction executing in virtual machine user mode should 
not attempt to modify the CPSR mode bits (or for that 
matter try any privileged instruction). After validating the 
instruction the hypervisor changes the context of real 
hardware CPU such that when control returns back to the 
virtual machine process the execution may continue as if 
the instruction was executed directly on the machine. 

Some of the other functionalities that a hypervisor must 
provide are I/O forwarding and virtual memory support. A 
hypervisor must efficiently arbitrate between the I/O 
devices and guest operating systems in a seamless manner. 
Also it must implement a mechanism by which a guest 
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operating system’s memory management works correctly in 
a virtual machine environment without, conflicting with the 
memory management of the hypervisor itself. In the current 
system, we did not implement the above two 
functionalities. We think that I/O forwarding can be added 
to the system without much difficulty; memory 
management, though, is an altogether different ball game. 
We provide more details about the difficulties in emulating 
the ARM memory management system in Section 5. 

4. CONTRIBUTIONS 
4.1 Sensitive Instruction Study on ARM 
An operating system runs in a kernel-mode, which allows 
higher privileges compared to the user applications. This 
higher privileged mode allows the OS access to certain 
privileged machine instructions and resources not available 
to user-mode applications. This creates a problem in 
building a hypervisor, since the OS will now run in a semi-
privileged hardware mode, with traps on sensitive 
instructions going to the hypervisor. It is the responsibility 
of the hypervisor to keep track of the OS’s state, allow the 
safe operations to execute, and block the illegal sensitive 
operations from executing. Analysis of virtualization on the 
Intel Pentium architecture [1] shows that the instructions 
following instructions must be considered as sensitive: 

• An instruction represented by the same bit pattern or 
format executes differently in modes of different 
privileges. This means that on execution, the instruction 
must trap to the hypervisor which has the mode 
information to execute the instruction properly. 

• A instruction whose execution requires greater 
privileges than the privilege in which the guest OS is 
being run. 

Using this as a baseline, we classify the following 
instructions in the ARM7 architecture [12] as sensitive and 
present our reasons for the classification. As a result of our 
study we identified six categories for sensitive ARM 
instructions. 

• MRS and MSR instructions: instructions that are related to 
the CPSR (Current Program Status Register). MRS (Move 
PSR to General-purpose Register) instruction moves the 
value of the CPSR or the SPSR of the current mode into a 
general-purpose register. In the general-purpose register, 
the value can be examined or manipulated with normal 
data-processing instructions. MSR (Move to Status 
Register from ARM Register) instruction transfers the 
value of a general-purpose register or immediate 
constant to the CPSR or the SPSR (Saved Program Status 
Register). 

• Common ALU (Arithmetic Logic Unit) instructions: 
instructions like ADD, AND, etc. that have their S bit set to 
1 and also the Rd (Destination register) = 15 (Rd is the 
Program Counter.) If this is the case for these group of 

instructions, then the CPSR is updated (Value in SPSR is 
written into CPSR). 

• Thumb Related instructions: instructions that have the 
capability to switch to the Thumb mode for ARM. The 
Thumb instruction set is re-encoded subset of the ARM 
instruction set and is designed to increase the 
performance using a 16-bit or narrower memory data 
bus and to allow better code density than regular ARM. 
There are branch instructions (e.g. BX, BLX) which can 
switch instruction set, so that execution continues at the 
branch target using the Thumb instruction set of ARM. 

• Privileged Coprocessor instructions: instructions that 
make use of the coprocessors in the system. There are 
three types of coprocessor instructions: Data-processing 
(e.g. CDP), data transfer (e.g. LDC), register transfer (e.g. 
MRC) and all of them are considered to be sensitive. 

• MMU (Memory Management Unit) related instructions: 
instructions that make use of the MMU are sensitive 
instructions as well. Load and store type of instructions 
are sensitive since they go through the memory 
management unit. 

• Exceptions: instructions such as SWI (software 
interrupt). Since these instructions cause mode change, 
they are considered as sensitive instructions. 

5. CHALLENGES IN DESIGN AND 
IMPLEMENTATION 
The first part of the project was to read, understand and 
make changes to the QEMU source code to force QEMU to 
trap when trying to execute a sensitive instruction from low 
privileged mode, thus allowing our Choices Hypervisor to 
emulate the sensitive instruction. The whole mechanism 
becomes a bit confusing, where the ARM instruction are 
being emulated by Choices which itself is executing over 
QEMU ARM CPU emulator. The various system 
components are shown in Figure 2. 

 
Figure 2. System Block Diagram showing Choices Hypervisor 

running on QEMU 

5.1 Privilege Modes 
A design choice we made was to decide upon the number 
of privilege modes we could provide in the hardware (by 
making changes in QEMU). Including the various interrupt 
modes, there are in total 7 privilege modes in the ARM 
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CPU. By providing a VMX-style architecture we can in 
total add 7 more modes (virtual machine modes), one each 
for the current privilege modes. Each of the new virtual 
machine modes would be a mirror of its corresponding 
current privilege mode but would trap on executing a 
sensitive instruction. We decided to maintain the additional 
virtual machine modes in software than in hardware. This 
decision was made to keep the system simple and easy to 
implement. All state information is stored and maintained 
by the hypervisor and not by the hardware. 

5.2 Virtual Memory 
A tricky implementation issue is providing memory 
management support for virtual machines. For 
virtualization to take place we cannot allow a guest OS to 
read/write directly from/to system page tables. The 
hypervisor needs to act as an interface for any access to the 
page tables by the guest OS. Since the page tables are 
stored in memory, we will have to keep tab of all memory 
reads/writes the guest OS make to see if the memory area 
accessed stores a page table or not. 

The performance overhead for trapping on all memory 
accesses by the guest OS makes the above solution 
infeasible. The solution then is to have the page frame 
storing the page tables (for a virtual machine) be 
inaccessible for the guest OS (i.e. the page table entry for 
the logical address of the page frame storing the page tables 
be invalid). This will ensure that a trap to the hypervisor is 
generated only when attempts to access the page frame 
storing the page tables are made. Due to the intricacy of 
this implementation, we for now assume that the ARM 
memory management will never be activated by the binary 
program running in the virtual machine. 

6. EXPERIMENTAL RESULTS 
6.1 Motivation 
Our experiments sought to demonstrate that our modified 
system preserves correctness and efficiency when 
executing sensitive instructions, that the RISC-nature of 
ARM provides an excellent instruction set from which to 
implement VMX-style virtualization primitives, and that 
the Choices OS is a worthwhile candidate in which to 
implement a hypervisor. 

6.2 Procedure Overview 
To test that our implementation properly traps to the 
hypervisor when executing sensitive instructions in low 
privileged user-mode, we run an ARM7 binary application 
that executes the supported sensitive instructions both in an 
unchanged QEMU environment (executing in privileged 
system mode) and in a virtual environment (running in low 
privileged user-mode) using our Choices hypervisor on the 
modified QEMU. We then test that our modified 
implementation correctly emulates the sensitive 
instructions by checking that the output of the binary 
program is the same when run in both environments, and 

measure the efficiency of our system by analyzing the 
number of instructions executed at runtime when running 
the test binary in each environment.  

6.3 Equipment and Experimental 
Environment 
Our environment consists of a single x86 host running our 
modified version of the ARM emulator QEMU, which 
hosts our modified version of the Choices OS with 
hypervisor support running in kernel-mode, which hosts 
guest OSes running in user-mode. We are using the CSIL-
LINUX machines, running QEMU 0.8.0 on Linux 2.6.15 
and compiling with gcc 3.2. Note that an attempt was made 
to compile and run QEMU on Windows using the Linux 
API emulator CYGWIN, but this effort was abandoned due 
to lack of CYGWIN support. 

6.4 Metrics and Results 
6.4.1 Correctness 
We would like to have assurance that every targeted ARM7 
instruction emulated by QEMU is handled correctly by our 
virtualization approach. Moreover, the virtualized 
instruction should not have any additional side effects on 
the VM or the real host other than it supposed to have. To 
study this, we tested several valid binaries in both an 
unmodified system and in our modified environment, and 
ensured that they execute their operations correctly and 
return the expected results. 

For example, a sample ARM7 binary might include the 
following instructions: 
CMP R1, R3 
MSR CPSR, #0x10 

with the following output: 
We got a hypercall for MSR 
context->CPSR before MSR = 0x60000010 
context->CPSR after MSR = 0x10 

The first non-sensitive CMP instruction sets the CPSR bits to 
#0x60000010, which is the expected comparison output 
stored in the CPSR. Then the MSR instruction changes the 
CPSR to #0x10 representing a change from the VM system 
mode to the VM user mode. Since, this is a legal operation 
in system mode it is allowed by the hypervisor without any 
errors. 

6.4.2 Completeness 
As described above, with the exception of instructions 
pertaining to memory management, sensitive ARM7 
instructions that are emulated by QEMU have been 
implemented in our virtualization approach. These 
instructions show exactly the same behavior before and 
after being virtualized using our approach. 

6.4.3 Performance 
Another key metric for evaluation is the performance of the 
system. Trapping into the hypervisor for the interpretation 
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of sensitive instructions and validation checks for these 
instructions provides significant overhead, but it is highly 
undesirable for the hypervisor to excessively slow valid 
operations. We did not implement the means by which to 
analyze the number of extra ARM instruction being 
executed by the Choices handler to emulate a sensitive 
instruction, but instead observed the number of lines of 
ARM instructions in the compiled binary code of our 
handler function. 

On average, we observed 320 additional ARM instructions 
in the compiled handler code for emulating a sensitive 
instruction. This figure tells the total number of ARM 
instructions in the hyper call handler binary for emulating 
one sensitive instruction; note that this is a pessimistic 
bound since there are a number of branch instructions 
(corresponding to if statements in the C++ code) that are 
executed as well. 

6.4.4 Security 
One of the main motivations for a VM implementation is to 
keep VMs isolated from each other and the hypervisor. 
Therefore, a key test metric is the system’s security: does 
the hypervisor achieve its intended goal of keeping VM 
accesses in their own space and allow valid VM operations 
only? To measure this we tested the system with several 
invalid binaries in different VMs that execute privileged 
instructions in VM user-mode or access out-of-bounds 
registers. Our system prevents invalid binaries from 
executing invalid instructions or accessing protected 
registers, and from each VM’s perspective, there is no 
interfere and each will function like a separate operating 
system on a separate host. 

For example, expanding on the example above, if we now 
execute an ARM binary with the following instructions: 
CMP R1, R3 
MSR CPSR, #0x10 
MSR SPSR, R0 

we get the following output: 
We got a hypercall for MSR 
context->CPSR before MSR = 0x60000010 
context->CPSR after MSR = 0x10 
We got a hypercall for MSR 
ERROR: Tried to do SPSR = reg from VM 
User_mode 

In this case, since we executed an instruction with SPSR 
access in VM user mode, the hypervisor flags an error 
immediately and halts the execution of the erroneous code.  

7. CONCLUSION 
Our current design and implementation supports a simple 
ARM binary file (not employing memory management) 
running in a virtual machine environment. The virtual 
machine environment is supported by our Choices 
Hypervisor, executing in our modified QEMU, which 

provides emulated VMX style ARM architecture. The 
design and implementation of the system is such that it is 
can be easily extended to provide support for full fledged 
virtual machine environment with memory management 
turned on. 

We hope that our work will influence future directions of 
virtualization research by showing the baseline 
requirements for a system that virtualizes ARM via a 
hypervisor. Acceptable performance shows that we have 
created a proof-of-concept for future hardware-
virtualization support in ARM processors, in addition to the 
design and implementation of an object-oriented hypervisor 
that future Choices designers can exploit. 
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